- Home
- Standard 11
- Mathematics
Suppose $2-p, p, 2-\alpha, \alpha$ are the coefficient of four consecutive terms in the expansion of $(1+x)^n$. Then the value of $p^2-\alpha^2+6 \alpha+2 p$ equals
$4$
$10$
$8$
$6$
Solution
$2-p, p, 2-\alpha, \alpha$
Binomial coefficients are
$\begin{array}{ll} & { }^n C_r,{ }^n C_{r+1},{ }^n C_{r+2},{ }^n C_{r+3} \text { respectively } \\ \Rightarrow & { }^n C_r+{ }^n C_{r+1}=2 \\ \Rightarrow & { }^{n+1} C_{r+1}=2 \quad \ldots \ldots .(1) \\ & \quad \text { Also, } \quad{ }^n C_{r+2}+{ }^n C_{r+3}=2 \\ \Rightarrow & { }^{n+1} C_{r+3}=2 \quad \ldots \ldots .(2) \\ & \quad \text { From }(1) \text { and (2) } \\ & { }^{n+1} C_{r+1}={ }^{n+1} C_{r+3}\end{array}$
$\begin{aligned} \Rightarrow \quad & 2 \mathrm{r}+4=\mathrm{n}+1 \\ & \mathrm{n}=2 \mathrm{r}+3 \\ & { }^{2 \mathrm{r}+4} \mathrm{C}_{\mathrm{r}+1}=2\end{aligned}$
Data Inconsistent